ARDUINO PROGRAMLAMA

Yrd.Doç.Dr. Bülent ÇOBANOĞLU

Arduino Nedir?http://arduino.cc/

- Açık kaynaklı fiziksel programlama platformu
- Programlama dili <u>Processing / Wiring dili</u>
- Arduino, açık kaynak kodlu yazılım ve donanıma sahip bir mikrodenetleyici platformudur. Açık kelimesi ile gerçek anlamda açık tasarımı ifade edilmektedir. Baskılı devresi, şematik tasarımı, pc üzerinde çalışan derleyicisi, kütüphaneleri ve tüm detayları ile internet ortamında paylaşılmaktadır.
- Arduino aynı zamanda mikro denetleyici cihazın adı olarak da kullanılmaktadır. Baş tasarımcılarının (Massimo Banzi ve David Cuartielles) İtalyan olmaları nedeniyle cihazın adı da doğal olarak İtalyancadan seçilmiş... Kelime "Sıkı arkadaş" anlamına gelen bir erkek ismi. Wikipedia kaynağına göre Arduino'ya ilham veren Wiring platformu, Ivrea Tasarım Enstitüsü'nde Hernando Barragan tarafından geliştrilmiş. Ivrea'lı Arduin ise bu enstitünün bulunduğu kasabaya ait tarihi bir karakterdir.

Processing & Wiring Dilleri

- Processing; Ben Fry ve Casey Reas tarafından 2001 de (ki her ikisi de John Maeda's öğrencileriydi, MIT Media Lab.de) geliştirildi.
- Grafiksel uygulamalar için kolay programlama ortamı oluşturur.
- <u>http://processing.org</u> Referans: <u>http://processing.org/reference/</u>
- Wiring; 2003 de Hernando Barragán tarafından başlatılan açık bir projedir. Gönüllü küçük bir ekip tarafından geliştirilmiştir.
- Wiring, tek bir MCU bordu + bir IDE + bir programlama dilinin birleşiminden oluşan açık kaynak kodlu elektronik prototip platformudur.
- <u>http://www.wiring.org.co/</u> Referans: <u>http://wiring.org.co/reference/</u>

Niçin Arduino?

- Hem donanımı hem de yazılımı Açık kaynaklı,
- Ucuz
- Sadece USB veya Bluetooth ile ile iletişim
- İleri teknolojileri Boarda kolay entegre edebilirsiniz

PINGUNIO (http://www.pinguino.cc/)

Pinguino 32 Micro 30 mar 2012

P33P35P37P39 P34P36P38P32

Arduino Boardları

• Fiziksel Giriş/Çıkış (I/O) bordu ile Programlanabilir Bütünleşik Devre (IC).

Arduino Duo Donanımsal Yapısı

Digital Pins 11,12 & 13 are used by the ICSP header for MOSI, MISO, SCK connections (Atmega168 pins 17,18 & 19). Avoid lowimpedance loads on these pins when using the ICSP header. ATmega2560 128 words

1.024

Arduino Duo Donanimsal Yapısı

Pin Number

DIP-28

14

15

16

17

18

TQFP-32

12

13

14

15

16

I/O Pin

PB0

PB1

PB2

PB3

PB4

Function

D8

CLKO

ICP1

PCINT0

D9

OC1A

PCINT1

D10

OC1B

-SS

PCINT2

D11

OC2A

MOSI

PCINT3

D12

MISO

PCINT4

Description

Digital pin 8

Divided system clock output

Digital pin 9 (PWM capable)

Digital pin 10 (PWM capable)

SPI bus master/slave select

Digital pin 11 (PWM capable)

Pin-change interrupt 2

Pin-change interrupt 3

Pin-change interrupt 4

Digital pin 12

Pin-change interrupt 0

Pin-change interrupt 1

Timer/counter 1 input capture input

Timer/counter 1 output compare match A output

Timer/counter 1 output compare match B output

Timer/counter 2 output compare match A output

SPI bus master output, slave input (ISP)

SPI bus master input, slave output (ISP)

Pin Number

TQFP-32

17

7

8

23

24

25

26

DIP-28

19

9

10

23

24

25

26

I/O Pin

PB5

PB6

PB7

PC0

PC1

PC2

PC3

Function

D13

SCK

PCINT5

XTAL1

TOSC1

PCINT6

XTAL2

TOSC1

PCINT7

A0

PCINT8

A1

PCINT9

A2

PCINT10

A3

PCINT11

	Pin Number		I/O Pin	Function	Description
	DIP-28	TQFP-32			
	27	27	PC4	A4	ADC4, analog input 4
				SDA	I²C/TWI serial bus data input/output line
				PCINT12	Pin-change interrupt 12
	28	28	PC5	A5	ADC5, analog input 5
				SCL	I ² C/TWI serial bus clock line
				PCINT13	Pin-change interrupt 13
Description	1	29	PC6	-RESET	Reset input, active low
				PCINT14	Pin-change interrupt 14
Digital pin 13 (LED)	2	30	PD0	D0	Digital pin 0
SPI bus master clock input (ISP)				RXD	USART serial input
Pin-change interrupt 5				PCINT16	Pin-change interrupt 16
Quartz crystal or ceramic resonator input, external	3	31	PD1	D1	Digital pin 1
clock input				TXD	USART serial output
Timer/counter 2 oscillator input				PCINT17	Pin-change interrupt 17
Pin-change interrupt 6	4	32	PD2	D2	Digital pin 2
Quartz crystal or ceramic resonator output				INT0	External interrupt 0
Timer/counter 2 oscillator output				PCINT18	Pin-change interrupt 18
Pin-change interrupt 7	5	1	PD3	D3	Digital pin 3 (PWM capable)
ADC0, analog input 0				OC2B	Timer/counter 2 output compare match B output
Pin-change interrupt 8				INT1	External interrupt 1
ADC1 analog input 1				PCINT19	Pin-change interrupt 19
Pin_change interrupt 0	Pin Number		I/O Pin	Function	Description
Pri-change interrupt 9	DIP-28	TQFP-32	DD (D.	
ADC2, analog input 2	6	2	PD4	D4	Digital pin 4
Pin-change interrupt 10				XCK	USART external clock
ADC3, analog input 3				10	Timer/counter 0 external counter input
Pin-change interrupt 11			DD 5	PCIN120	Pin-change interrupt 20
		9	PD5	D5	Digital pin 5 (PWM capable)
				OC0B	Timer/counter l output compare match is output
				DCINIT21	Din chongo internut 21
	12	10	PD6	D6	Digital pip 6 (PWM capable)
	12	10	rbo	OCOA	Timer/counter 0 output compare match 4 output
				AINO	Analog comparator input 0 (positiva)
				PCINT22	Pin-change interrunt 22
	13	11	PD7	D7	Digital pin 7
				AIN1	Analog comparator input 1 (negative)
				PCINT23	Pin-change interrupt 23
	1	1	1		

Shield: Arduino boardu üzerindeki devre eklentileridir.

Farklı Platformlar

- Arduino- Labview Platformu
- <u>https://decibel.ni.com/content/groups/labview-</u> interface-for-arduino
- <u>http://www.robitshop.com/ArduinoLabVIEW-</u> Bundle,PR-2855.html

- Arduino- MATLAB ve Simulink
- <u>http://www.mathworks.com/hardware-support/arduino-matlab.html</u>
- WBAN ve Giyilebilir Teknolojiler

http://rainycatz.wordpress.com/2012/04/07/wearabletechnology-bootcamp-with-lilypad-arduinotechnocamps-aberystwyth/

Arduino uygulamalarını Proteus ile Simüle Etmek

- <u>http://www.youspice.com/ys/gettingstartedwithpr</u> oteus.3sp
- <u>http://www.thinkcreate.org/index.php/debug-arduino-with-proteus/</u>
- <u>http://www.youtube.com/watch?v=sXdnvPtTZ7A</u>

Arduino Donanımlarını Nereden Temin Edebilirim?

- <u>http://arduino.cc/en/Main/Buy</u>
- <u>http://dx.com/s/Arduino</u>
- <u>http://www.ebay.com</u>
- <u>http://www.robotistan.com/</u> (Türkçe)
- <u>http://www.robotshop.com/arduino-2.html</u>

•

Arduino ile Nasıl Bir Proje/Ödev Yapabilirim?

- 1. Medikal Uygulamalar
- 2. Robotik Uygulamalar -Make an Arduino-Controlled Robot by Michael Margolis
 - İnsansı Robotlar Humanoid Robots
- 3. Mekatronik Uygulamalar
- 4. Mobil Uygulamalar
- 5. Giyilebilir Uygulamalar
- 6. Kablosuz Haberleşme Uygulamaları -Building Wireless Sensor Networks by Robert Faludi
- 7. Algoritmik Uygulamalar
- 8. RFID Uygulamasi Getting Started with RFID by Tom Igoe
- 9. Ev Otomasyonu Programming Your Home Automate with Arduino, Android, and Your Computer -Mike Riley

Arduino Referans Kaynakları

- http://blog.robomore.com/?cat=6&paged=2
- https://labitat.dk/wiki/Arduino_beginners_workshop
- http://coopermaa2nd.blogspot.com/
- http://arduino.cc/en/Tutorial/HomePage
- http://shieldlist.org/

Fritzing- Çizim programı: <u>http://fritzing.org/download/</u>

Arduino Proje Geliştirme Adımları

Arduino Uno Bağlantı Noktaları

ATmega328 İç Mimarisi

□ PC5 (ADC5/SCL/PCINT13) 28 PC4 (ADC4/SDA/PCINT12) 27 26 PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) 25 □ PC1 (ADC1/PCINT9) 24 23 PC0 (ADC0/PCINT8) VCC 22 🗆 GND 21 🗆 AREF GND 78 20 AVCC 19 PB5 (SCK/PCINT5) 10 18 PB4 (MISO/PCINT4) 17 BB3 (MOSI/OC2A/PCINT3) 16 PB2 (SS/OC1B/PCINT2) 15 PB1 (OC1A/PCINT1)

http://www.adafruit.com/index.php?main_page=popup_image&pID=50

Arduino Duemilanove/Uno Özellikleri

Microcontroller	ATmega168/328
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
Analog Input Pins	6
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by bootloader
SRAM	1 KB (ATmega168) or 2 KB (ATmega328)
EEPROM	512 bytes (ATmega168) or 1 KB (ATmega328)
Clock Speed	16 MHz
Programlanabilme Kapasitesi	10000 Flash, 100.000 EEPROM

Arduino Duemilanove

http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove

http://arduino.cc/en/uploads/Main/ArduinoDuemilanove.jpg

Arduino Due

Atmel SAM3X8E processor (32 bit ARM Cortex M3 architecture, 84MHz)

http://www.adafruit.com/index.php?main_page=popup_image&pID=1076

http://arduino.cc/en/Main/ArduinoBoardDue

Arduino Lilypad – Arduino Mini

Donanımsal Bağlantı

Arduino Programlama Temelleri

Arduino programları iki temel fonksiyon ile çalışır

```
void setup() {
    //led pinleri, motorlar, sensorler, vs..
}
void loop() {
    // sensorlerden bilgiyi al
    // motorları kontrol et, veya ilgili ledi yak/söndür
```

}

void setup() { port ismi pinMode(9, OUTPUT); Giriş / Çıkış

Yönlendirmesi

pinMode komutu ile bir pini Giriş olarak yönlendirmek için INPUT, çıkış olarak yönlendirmek için ise OUTPUT deyimi kullanılır.

http://www.arduino.cc/en/Reference/HomePage

LOOP Fonksiyonu

```
void loop()
    digitalWrite(9, HIGH);
    delay(1000);
    digitalWrite(9, LOW);
    delay(1000);
                              LED yak, söndür
            1 sn bekle
```

Giriş/Çıkış Pin Yönlendirme

0 ve 1 (PD0 and PD1). Pinleri giriş, ve bu pinlere değer atama

Arduino yaklaşımı

pinMode(0, INPUT); pinMode(1, INPUT); digitalWrite(0, HIGH); digitalWrite(1, HIGH);

3, 5, ve 7 (PD3, PD5, and PD7) pinleri çıkış olarak ayarla

pinMode(3, OUTPUT);
pinMode(5, OUTPUT);
pinMode(7, OUTPUT);

Sayı sistemi tanımlamaları

- int decimal=4711;
- int binary=B1001001100111;
- int octal=011147;
- int hexadecimal=0x1267;
- Ekrana farklı formatları yazdırma;
 - -Serial.println(degisken, DEC);
 - -Serial.println(degisken, HEX);
 - -Serial.println(degisken, OCT);
 - -Serial.println(degisken, BIN);
 - -Serial.println(degisken, BYTE);

Veri Tipleri

Table 6-2. Available Data Types and Their Ranges					
Data Type	Number of Bits	Number of Bytes	Minimum Value	Maximum Value	
unsigned char byte	8	1	0	255	
signed char	8	1	-128	127	
unsigned int word	16	2	0	65,535	
int	16	2	-32,768	32,767	
unsigned long	32	4	0	4,294,967,296	
long	32	4	-2,147,483,648	2,147,483,647	
unsigned long long	64	8	0	18,446,744,073,709,551,616	
long long	64	8	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	
float	32	4	-3.4028235E+38	3.4028235E+38	
double	32	4	-3.4028235E+38	3.4028235E+38	

Değişken Tanımlama

int val = 5;

Atama operatörü

Atanan değer

Gecikme -delay()

Time

- unsigned long <u>millis()</u>
- <u>delay(ms)</u>
- delayMicroseconds(us)

unsigned long millis() : Board üzerindeki programın çalışmaya başlamasından bu ana kadar ki geçen zaman.

delay (ms) : unsigned long ms tipinde Milisaniye cinsinden gecikme

delayMicroseconds(us): Mikrosaniye cinsinden gecikme

Ornek Uygulama-1

void loop(){

const int btnDurum = digitalRead (BUTTON_PIN); if (btnDurum == HIGH) { led_state =(led_state == LOW)? HIGH : LOW; digitalWrite(LED_PIN, led_state);

const int ledPin = 13; int buttonState = 0;

const int buttonPin = 2; // pushbutton pin numarasi // LED pin numarası // pushbutton durumları okunacak

void setup()

// LED pinin bağlı olduğu Portu çıkış olarak yönlendir pinMode(ledPin, OUTPUT); // pushbutton pininin bağlı olduğu portu giriş olarak yönlendir pinMode(buttonPin, INPUT);

```
void loop()
```

// pushbutton değerini / durumunu oku

buttonState = digitalRead(buttonPin);

// Eğer pushbuttona basıldı ise durumunu HIGH yap ve Ledi yak if (buttonState == HIGH) { digitalWrite(ledPin, HIGH);

else { digitalWrite(ledPin, LOW);

Seri iletişim (Giriş/Çıkış)

- Bilgisayar ile Arduino Board arasında iletişimde (USB, seri port) seri iletişim kullanılır. Bunun için digital pinlerden 0 (RX) ve 1 (TX) uçları kullanılır.
 - Serial.begin(bps)
 - •int Serial.available()
 - •int Serial.read()
 - •Serial.flush()
 - Serial.print(data)
 - Serial.println(data)

Örnek Uygulama-2

```
const int ledPin=13;
char gelen;
void setup() {
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);
```

}

```
void loop() {
    if (Serial.available()>0)
    gelen=Serial.read();
    if(gelen=='H') digitalWrite (ledPin, HIGH);
    if(gelen=='L') digitalWrite (ledPin, LOW);
```

}

💿 process_elipse | Arduino 1.5.4

Dosya Düzenle Taslak Araçlar Yardım

process_elipse

const int ledPin = 13; int gelenByte; void setup() {

Serial.begin(9600);
pinMode(ledPin, OUTPUT);

70id 100p() {

}}

// gelen bir veri varsa: if (Serial.available() > 0) { // FIF0 (first in first out) mantigi ile gelenByte = Serial.read(); // gelen H (ASCII 72) ise LED i yak if (gelenByte == 'H') { digitalWrite(ledPin, HIGH); } // gelen L (ASCII 76) ise LED i söndür if (gelenByte == 'L') { digitalWrite(ledPin, LOW); }

Analog Çıkış- Uygulama 3 (Dimmer)

const int ledPin = 9; void setup()

// initialize the serial communication: Serial.begin(9600); // initialize the ledPin as an output: pinMode(ledPin, OUTPUT);

void loop() {
 byte brightness;
 // check if data has been sent from the computer:
 if (Serial.available()) {
 // read the most recent byte (which will be from 0 to 255):
 brightness = Serial.read();
 // set the brightness of the LED:
 analogWrite(ledPin, brightness);

Analog Giriş- Uygulama 4 (Pot.)

int potPin = A2; // pot. pini seç int ledPin = 13; int val = 0; // sensorden gelen degeri tut

void setup()

pinMode(ledPin, OUTPUT);

void loop() { val = analogRead(potPin); // oku sensorü digitalWrite(ledPin, HIGH); delay(val); digitalWrite(ledPin, LOW); delay(val);

Sicaklık sensörü- Uygulama 5 (TMP36 sensörü)

Açıklama: Eğer 5V Arduino, kullanılıyorsa 10-bit analog donusumde Pin voltajı: milliVolts = (reading from ADC) * (5000/1024) // analog okunan değerler 0 - 1023 arasındadır .Bu formül 0-1023 arasındaki analog degeri 0-5000mV (= 5V) e donusturur. Sistem 5v ile beslendiğinden 5.0/1024 değeri ile okunan değeri çarparsak voltaj değeri bulunur

Eğer 3.3V Arduino, kullanılıyorsa 10-bit analog donusumde Pin voltajı: milliVolts = (reading from ADC) * (3300/1024) // Buda 0-3300mV (= 3.3V) arası donusum yapar

Sonrasında ise mV cinsinden Derece için; Sicaklik= [(analog voltage in mV) - 500] / 10

// Ve okunan voltajı ekrana seri port üzerinden
yaz.
Serial.println(voltage);


```
//TMP36 Pin bağlantısı
int sensorPin = 0;
//çözünürlük 10 mV / derece ve 500 mV offset değeri
void setup()
{
  Serial.begin(9600);
}
void loop()
{
  //sıcaklık sensöründen voltaj degerini oku
  int reading = analogRead(sensorPin);
  // okunan degeri voltaja donustur(3.3v arduino için 3.3 kullan)
  float voltage = reading * 5.0;
  voltage /= 1024.0;
    // voltajı yaz
  Serial.print(voltage); Serial.println(" volts");
```

```
// sicaklığı yaz
float temperatureC = (voltage - 0.5) * 100 ;
//converting from 10 mv per degree wit 500 mV offset
//to degrees ((voltage - 500mV) times 100)
Serial.print(temperatureC); Serial.println(" C derece");
```

// Fahrenheit a dönüştür
float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;
Serial.print(temperatureF); Serial.println(" F derece");

delay(1000);

Operatörler

Bitwise Operators

- & (bitwise and)
- [bitwise or]
- <u>^</u> (bitwise xor)
- ~ (bitwise not)
- << (bitshift left)
- >> (bitshift right)

Compound Operators

- ++ (increment)
- -- (decrement)
- += (compound addition)
- -= (compound subtraction)
- <u>*=</u> (compound multiplication)
- /= (compound division)
- &= (compound bitwise and)
- <u>|=</u> (compound bitwise or)

Arithmetic Operators

- + (addition)
- (subtraction)
- * (multiplication)
- / (division)
- <u>%</u> (modulo)

Comparison Operators

- == (equal to)
- <u>!=</u> (not equal to)
- < (less than)
- > (greater than)
- <= (less than or equal to)
- >= (greater than or equal to)

Boolean Operators

- <u>&&</u> (and)
- ∐ (or)
- <u>!</u> (not)

if (val > 10 && val < 20) if (val < 10 || val > 20)

Kontrol Komutlari

Control Structures

- <u>if</u>
- if...else
- for
- switch case
- while
- do... while
- break
- continue
- return

```
int counter = 0;
void setup() {
    Serial begin(9600);
```

void loop() {

```
if(counter < 10)
{
    Serial println("less than 10");
}
else if (counter == 10)
{
    Serial println("equal to 10");
}
else
{
    Serial println("greater than 10");
    Serial end();
}
counter = counter + 1;</pre>
```

ASCII Karakter Gönderme-Seri İletişim Uygulama-5

```
void setup() {
  Serial.begin(9600);
  // LED bağlanacak pinleri çıkış olarak ata
      for (int Pin = 2; Pin < 7; Pin++) {</pre>
        pinMode(Pin, OUTPUT);
      }
}
void loop() {
 // oku seri girisi:
 if (Serial.available() > 0) {
   int inByte = Serial.read();
   // ASCII değerler; 'a' = 97, 'b' = 98, vs..
   switch (inByte) {
    case 'a':
      digitalWrite(2, !digitalRead (2));
      break;
    case 'b':
      digitalWrite(3, HIGH);
      break;
    case 'c':
      digitalWrite(4, HIGH);
      break;
    case 'd':
      digitalWrite(5, HIGH);
      break;
    case 'e':
      digitalWrite(6, HIGH);
      break;
    default:
      // LEDLer sönük
      for (int Pin = 2; Pin < 7; Pin++) {</pre>
        digitalWrite(Pin, LOW);
      }
```

}

Dizi (Array)Tanımlama- Uygulama 6

• Kullanım Şekli: Tip DiziAdi [] = { Dizi Elemanlari,.... };

```
sketch_Dizi
int ledPins[] = { 2, 7, 4, 6, 5, 3 };
int pinCount = 6;
void setup()
  for (int thisPin = 0; thisPin < pinCount; thisPin++)</pre>
  {
    pinMode(ledPins[thisPin], OUTPUT);
  }
void loop()
for (int thisPin = 0; thisPin < pinCount; thisPin++) {</pre>
    digitalWrite(ledPins[thisPin], HIGH);
    delay(100);
    digitalWrite(ledPins[thisPin], LOW);
 }
 for (int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
    // turn the pin on:
    digitalWrite(ledPins[thisPin], HIGH);
    delay(100);
    // turn the pin off:
    digitalWrite(ledPins[thisPin], LOW);
  }
```


LED Bar Graph- Uygulama 7

LEDbarGraph

```
// http://www.arduino.cc/en/Tutorial/BarGraph
```

```
const int analogPin = A0; // potentiometer bağlı pin
const int ledCount = 10; // Led sayısı
int ledPins[] = {2, 3, 4, 5, 6, 7,8,9,10,11 };
void setup() {
    // Led bağlı pinler çıkış
    for (int thisLed = 0; thisLed < ledCount; thisLed++) {
        pinMode(ledPins[thisLed], OUTPUT);
    }
}
void loop() {
    // read the potentiometer:
    int sensorReading = analogRead(analogPin);
    // map the result to a range from 0 to the number of LEDs:
    int ledLevel = map(sensorReading, 0, 1023, 0, ledCount);
    // loop over the LED array:
```

```
for (int thisLed = 0; thisLed < ledCount; thisLed++) {
    // if the array element's index is less than ledLevel,</pre>
```

```
// turn the pin for this element on:
```

```
if (thisLed < ledLevel) {</pre>
```

digitalWrite(ledPins[thisLed], HIGH);

}

// turn off all pins higher than the ledLevel:
else {

```
digitalWrite(ledPins[thisLed], LOW);
```


map(value, fromLow, fromHigh, toLow, toHigh)

Fonksiyon Tanımlama: Uygulama: Ultrasonic Sensor

sketch_oct25b §

int inputPin=4; // connect digital I/O 4 to the ECHO/Rx Pin
int outputPin=5; // connect digital I/O 5 to the TRIG/TX Pin

void setup()

```
Serial.begin(9600);
pinMode(inputPin, INPUT);
pinMode(outputPin, OUTPUT);
```

unsigned long ping()

```
digitalWrite(outputPin, LOW); // send low pulse for 2µs
delayMicroseconds(2);
digitalWrite(outputPin, HIGH); // send high pulse for 10µs
delayMicroseconds(10);
digitalWrite(outputPin, LOW); // back to low pulse
int distance = pulseIn(inputPin, HIGH); // read echo value
// distance = pulseIn(inputPin, HIGH, 38000)
int distance1= distance/29/2; // in cm
//distance1 = (distance / 58.138);
return distance1;
```

```
void loop()
```

```
int x = 0;
x = ping();
Serial.println(x);
delay(250); //delay 1/4 seconds.
```

LCD- Uygulama 9 (Pot.)

Paralel LCD- LiquidCrystal()

Kullanım Şekli: LiquidCrystal(rs, enable, d4, d5, d6, d7) LiquidCrystal(rs, rw, enable, d4, d5, d6, d7) LiquidCrystal(rs, enable, d0, d1, d2, d3, d4, d5, d6, d7) LiquidCrystal(rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7)

Paralel LCD-Seri Port: Uygulama 10

#include <LiquidCrystal.h>

```
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
```

void setup(){

```
lcd.begin(16, 2);
// Seri iletişim hızı
Serial.begin(9600);
```

```
}
```

{

```
void loop()
```

```
if (Serial.available()) {
  // mesajı almak için bekle
  delay(200);
  // Ekranı temizle
  lcd.clear();
  // Girilen karakterleri oku
  while (Serial.available() > 0) {
    // Herbir karakteri LCD de göster
    lcd.write(Serial.read());
  }
```

LMD16L							
1	IEXT>					Virtual Terminal	
	SA1	ama				SAlana	
	800 800 800 800 800 800 800 800 800 800	RS RW	8222	3383	35		
	- 00	- vo vo	~ ∞ o 📮	11 12 13	-		
VSS A							
		5 5		o ≠r	2 24		

Seri LCD – Uygulama 11

void setup()

```
{
   Serial.begin(9600);
```

void loop()

}

{

}

```
delay(1000);
Serial.print("Merhaba\n");
delay(1000);
Serial.print("Bulent\n");
delay(1000);
Serial.print("Sakarya\n");
```

Virtual Terminal	
HerhabaBulentSakaryaHerhabaBuler	tt SakaryaHerhabaBu lent SakaryaHerhaba
	LCD1 VDD Merhaba Bulent S RXD arya Merhaba VSS MILFORD-2X16-BKP <text></text>

Proje: Giyilebilir Fanlı LCD Ekranlı Şapka

```
int sensorPin = 0;// The analog pin the LM35's Vout is connected to.
const int motorPin = 9; // the number of the motor pin
#include <LiguidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
/*
Initialize serial connection with the computer*/
void setup()
Serial.begin(9600); // Begin serial connection with the computer
lcd.begin(16,2);
analogReference(INTERNAL);
/* for Arduino Mega please use analogReference(INTERNALlv1); */
pinMode(motorPin, OUTPUT);
void loop()
int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
float voltage = reading *5.0; // Convert sensor data to voltage
voltage /=1024.0;
Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor
float temperatureC=((100*1.1*voltage)/1024)*100;
float temperatureF=(temperatureC*(9.0/5.0))+32; //Convert voltage to temperature
Serial.print(temperatureF); Serial.println(" degrees F");// Print Temperature in C
// display Temperature on LCD
lcd.setCursor(0,0);
lcd.print("Temperature=");
lcd.setCursor(0,1);
lcd.print(temperatureF); lcd.println(" degrees F ");
//DC Motor control
if(temperatureF >58){
digitalWrite(motorPin, HIGH);
}
else{
digitalWrite(motorPin, LOW);
delay(10);// print data every lOmilliseconds
```


RC Servo Motor Örneği-1

#include <Servo.h>

}

```
Servo myservo; // Bir servo nesnesi olușturuldu
int pos = 0;  // servo pozisyonunu tutan değişken
void setup()
{
 myservo.attach(9); // servonun bağlandığı pin
}
void loop()
 for(pos = 0; pos < 180; pos += 1) // 0-180 derece</pre>
arası
 {
   myservo.write(pos);
   delay(15);
  }
  for(pos = 180; pos>=1; pos-=1)
   myservo.write(pos);
   delay(15);
 }
```


RC Servo Motor Örneği-2

#include <Servo.h>

Servo myservo; // Bir servo nesnesi oluşturuldu
int potpin = 0; // pot. Bağlananan analog pin
int val; // analog pinden okunan degerleri tutan deg.

void setup()

{

```
myservo.attach(9); // servo bağlanan pin
```

```
void loop()
```

```
val = analogRead(potpin); // oku potu ( 0 - 1023)
val = map(val, 0, 1023, 0, 179); // kalibre et
myservo.write(val); // poz. yaz
delay(15); // bekle
```


Step Motor Örneği-1 (Kütüphane kullanmadan)

int motorPin1 = 8; int motorPin2 = 9; int motorPin3 = 10; int motorPin4 = 11; int delayTime = 500;

void setup() {

pinMode(motorPin1, OUTPUT); pinMode(motorPin2, OUTPUT); pinMode(motorPin3, OUTPUT); pinMode(motorPin4, OUTPUT); void loop() { digitalWrite(motorPin1, HIGH); digitalWrite(motorPin2, LOW); digitalWrite(motorPin3, LOW); digitalWrite(motorPin4, LOW); delay(delayTime); digitalWrite(motorPin1, LOW); digitalWrite(motorPin2, HIGH); digitalWrite(motorPin3, LOW); digitalWrite(motorPin4, LOW); delay(delayTime); digitalWrite(motorPin1, LOW); digitalWrite(motorPin2, LOW); digitalWrite(motorPin3, HIGH); digitalWrite(motorPin4, LOW); delay(delayTime); digitalWrite(motorPin1, LOW); digitalWrite(motorPin2, LOW); digitalWrite(motorPin3, LOW); digitalWrite(motorPin4, HIGH); delay(delayTime);

Figure 1

Step Motor Örneği-2

#include <Stepper.h> int in1Pin = 12; int in2Pin = 11; int in3Pin = 10; int in4Pin = 9; Stepper motor(100, in1Pin, in2Pin, in3Pin, in4Pin); void setup() pinMode(in1Pin, OUTPUT); pinMode(in2Pin, OUTPUT); pinMode(in3Pin, OUTPUT); pinMode(in4Pin, OUTPUT); while (!Serial); Serial.begin(9600); motor.setSpeed(20); void loop() if (Serial.available()) int steps = Serial.parseInt(); motor.step(steps);

steps: motorun bir tam turdaki adım sayısı. Örneğin 360 / 3.6 = 100 adım pin1, pin2: motorun bağlandığı pinler pin3, pin4:seçimlik motorun bağlandığı pinler

Step Motor Örneği-3

```
#include <Stepper.h>
```

```
#define STEPS 100 // step motor adım
```

```
Stepper stepper(STEPS, 8, 9, 10, 11); //pinler
```

int previous = 0;

```
void setup()
```

```
stepper.setSpeed(30); // motor hizi 30 RPM
```

```
void loop()
```

{

}

{

}

```
int val = analogRead(0);
```

```
stepper.step(val - previous);
```

```
previous = val;
```


Proje: Sanal Klavye & Fare

Arduino; bilgisayarınızın klavyesi veya faresi olsun

3D Air Mouse projesi:

http://www.instructables.com/id/3D-AIR-mouse-Arduino-Processin

```
const int upButton = 2;
const int downButton = 3;
const int leftButton = 4;
const int rightButton = 5;
const int mouseButton = 6;
```

```
void setup() { // initialize the buttons' inputs:
    pinMode(upButton, INPUT);
    pinMode(downButton, INPUT);
    pinMode(leftButton, INPUT);
    pinMode(rightButton, INPUT);
    pinMode(mouseButton, INPUT);
```

```
Serial.begin(9600);
// initialize mouse control:
Mouse.begin();
Keyboard.begin();
```

```
void loop() {
   // use serial input to control the mouse:
   if (Serial.available() > 0) {
     char inChar = Serial.read();
```

```
switch (inChar) {
    case 'u':
      // move mouse up
      Mouse.move(0, -40);
      break;
    case 'd':
      // move mouse down
      Mouse.move(0, 40);
      break;
    case 'l':
      // move mouse left
      Mouse.move(-40, 0);
      break;
    case 'r':
      // move mouse right
      Mouse.move(40, 0);
      break:
    case 'm':
      // perform mouse left click
      Mouse.click(MOUSE_LEFT);
      break;
// use the pushbuttons to control the keyboard:
  if (digitalRead(upButton) == HIGH) {
    Keyboard.write('u');
  }
  if (digitalRead(downButton) == HIGH) {
    Keyboard.write('d');
  }
  if (digitalRead(leftButton) == HIGH) {
    Keyboard.write('l');
  }
  if (digitalRead(rightButton) == HIGH) {
    Keyboard.write('r');
  }
  if (digitalRead(mouseButton) == HIGH) {
    Keyboard.write('m');
```

```
}}
```